首页> 外文OA文献 >A parameterized non-intrusive reduced order model and error analysis for general time-dependent nonlinear partial differential equations and its applications
【2h】

A parameterized non-intrusive reduced order model and error analysis for general time-dependent nonlinear partial differential equations and its applications

机译:一般时变非线性偏微分方程的参数化非侵入降阶模型及误差分析及其应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A novel parameterized non-intrusive reduced order model (P -NIROM) based on proper orthogonal decomposition (POD) has been developed. This P-NIROM is a generic and e ffi cient approach for model reduction of parameterized partia l di ff eren- tial equations (P-PDEs). Over existing parameterized redu ced order models (P-ROM) (most of them are based on the reduced basis method), it is non -intrusive and inde- pendent on partial di ff erential equations and computational codes. During the tra ining process, the Smolyak sparse grid method is used to select a se t of parameters over a specific parameterized space ( Ω p ∈ R P ). For each selected parameter, the reduced ba- sis functions are generated from the snapshots derived from a run of the high fidelity model. More generally, the snapshots and basis function set s for any parameters over Ω p can be obtained using an interpolation method. The P-NIROM c an then be con- structed by using our recently developed technique [ 50 , 53 ] where either the Smolyak or radial basis function (RBF) methods are used to generate a set of hyper-surfaces representing the underlying dynamical system over the redu ced space. The new P-NIROM technique has been applied to parameterized Navier-Stokes equations and implemented with an unstructured mesh finite e lement model. The ca- pability of this P-NIROM has been illustrated numerically b y two test cases: flow past a cylinder and lock exchange case. The prediction capabilit ies of the P-NIROM have been evaluated by varying the viscosity, initial and bounda ry conditions. The results show that this P-NIROM has captured the quasi-totality of th e details of the flow with CPU speedup of three orders of magnitude. An error analysis f or the P-NIROM has been carried out.
机译:基于适当的正交分解(POD),开发了一种新颖的参数化非侵入式降阶模型(P -NIROM)。这种P-NIROM是一种通用有效的模型化参数化偏微分方程(P-PDE)的方法。在现有的参数化降阶模型(P-ROM)(大多数基于降基方法)上,它是非侵入性的,并且与局部微分方程和计算代码无关。在交易过程中,使用Smolyak稀疏网格方法在特定参数化空间(Ωp∈R P)上选择一系列参数。对于每个选定的参数,从高保真模型运行得出的快照中生成简化的基函数。更一般而言,可以使用插值方法获得Ωp上任何参数的快照和基函数集s。然后使用我们最近开发的技术[50,53]构造P-NIROM c,其中使用Smolyak或径向基函数(RBF)方法生成一组超表面,这些超表面表示基础上的动力学系统。减少空间。新的P-NIROM技术已应用于参数化的Navier-Stokes方程,并通过非结构化网格有限元模型实现。通过两个测试案例以数字方式说明了该P-NIROM的功能:流经圆柱体和锁交换盒。通过改变粘度,初始条件和边界条件,可以评估P-NIROM的预测能力。结果表明,该P-NIROM在CPU加速达到三个数量级的情况下已捕获了流细节的准总和。进行了错误分析或P-NIROM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号